inversion occurs for large polyenes. The previously defined n dependence of ΔR and ΔE^{*} odd makes the study of the two extreme cases, namely the rotation around external and most internal double bonds, easy. For the twisting around one external double bond the energy of the singlet excited state is given by eq 10 and 8 and ref 1 , if one neglects again the weak effective exchange on the twisted double bond

$$
\begin{aligned}
& \Delta S^{\perp} \mathrm{s}_{0} \rightarrow \mathrm{~S}_{1} \\
&(2 n, 2 n-1)=\Delta E^{2 n} n_{2 n-1.2 n}+\Delta E_{\mathrm{D}_{0} \rightarrow \mathrm{D}_{1}}^{\mathrm{R}}(2 n-1)= \\
& 2.02+16.50(2 n-1)(\mathrm{in} \mathrm{eV})
\end{aligned}
$$

For twisting around the most intern?l double bond, in a $4 n+2$ molecule, one obtains

$$
\begin{aligned}
& \Delta E^{\perp} \mathrm{s}_{0} \rightarrow \mathrm{~s}_{1} \\
& \quad(4 n+2,2 n+1)=\Delta R^{4 n+2}{ }_{2 n+1.2 n+2}+\Delta E_{\mathrm{D}_{0} \rightarrow \mathrm{D}_{1}}(2 n \\
& \quad-1)=1.1+18.4 / 2 n+1-16.2 /(2 n+1)^{2}(\text { in eV })
\end{aligned}
$$

The corresponding curves have been plotted in Figure 11. From these considerations it appears that (i) the cis-trans photoisomerization around double bonds should be impossible from the relaxed planar minima of the covalent S_{1} singlet excited states, except for butadiene and hexatriene (for its external double bond only); (ii) the photoisomerization should always remain possible from the vertically excited neutral singlet if it occurs around internal double bonds; (iii) the singlet photoisomerization around external double bonds is prefered up to 20 carbon atoms, but for larger compounds it should become impossible.

In Figure 11 we have not reported the experimental energy dependence of the allowed vertical singlet excitation toward the ${ }^{1} \mathrm{~B}_{\mathrm{u}}$ (ionic) excited state, for two reasons: (i) our neutral ${ }^{1} \mathrm{~A}_{g}$
excited states apparently are somewhat too high by 0.5 (octatetraene) to 0.25 eV (decapentene) with respect to experiment; (ii) the relevant experimental $\mathrm{X}^{1} \mathrm{~A}_{\mathrm{g}} \rightarrow{ }^{1} \mathrm{~B}_{\mathrm{u}}$ transition energies should concern the gaseous phase, while most experimental data for heavy polyenes concern the liquid phase. ${ }^{50}$ The difference is not negligible (0.25 for hexatriene and octatetraene) and the solvent effect may be larger for the ionic excited states (in which important instantaneous dipoles appear, creating larger dispersion forces with the solvant) than for the covalent states. The experimental vertical transition energies (in solvent) to the ${ }^{1} B_{u}$ state would follow in Figure 11 the straight line representing the energy of the singlet excited state twisted around a terminal double bond. This proves at least that the vertical absorption energy is always larger than the energy of the twisted covalent excited state, especially for inner bonds rotations. A previous paper ${ }^{8}$ has shown that the photoisomerization could not occur on the ionic singlet excited surface, and that the molecule had to undergo a conversion into either the neutral ${ }^{1} \mathrm{~A}_{g}$ covalent excited singlet, the ${ }^{3} \mathrm{~B}_{u}$ excited state (which would require an intersystem crossing), or the ground ${ }^{1} \mathrm{~A}_{g}$ state in a high vibrational level. The present results show that the three hypotheses remain valid for large polyenes.

Registry No. Ethylene, 74-85-1; butadiene, 106-99-0; hexatriene, 2235-12-3; octatetraene, 1482-91-3; decapentaene, 2423-91-8; propene, 115-07-1; pentadiene, 504-60-9; heptatriene, 2196-23-8; nonatetraene, 31699-36-2.
(50) F. Sondheimer, D. A. Ben Ephraim, and R. Wolovsky, J. Am. Chem. Soc., 83, 1675 (1961).

A UV Photoelectron Spectroscopic and Hartree-Fock-Slater MO-LCAO Study of Tetracyclo[3.3.0.0 $0^{2,4} .0^{3,6}$]oct-7-ene and Related Strained Compounds

G. Jonkers, W. J. Van der Meer, C. A. de Lange,* E. J. Baerends,* J. Stapersma, and G. W. Klumpp

Contribution from the Department of Chemistry, Free University, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands. Received July 11, 1983

Abstract

The UV photoelectron (PE) spectra of tetracyclo[3.3.0.0 $\left.0^{24} \cdot .^{3.6}\right]$ oct-7-ene, tetracyclo[3.3.0.0.0.4. $0^{3.6}$]octane, and deltacyclene have been measured. Spectra have been analyzed and assigned by using nonempirical Hartree-Fock-Slater (HFS) calculations. From this analysis and from a comparison with related molecules a remarkable destabilization of the high-lying antisymmetric Walsh orbital $\left(e_{A}\right)$ upon contraction of the molecular cage becomes apparent.

Compounds with the general formula (CH$)_{2 n}(n=1,2, \ldots)$ have generated much interest in organic chemistry for both synthetic and theoretical reasons. Within such families of valence isomers the CH building blocks can be connected in many different ways, often leading to highly strained hydrocarbons. The synthetic challenge posed by such compounds is obvious. One of the most strained molecules of the $(\mathrm{CH})_{8}$ family is tetracyclo[3.3.0.0. ${ }^{2.4} \cdot 0^{3.6}$]oct-7-ene ($1 ;$ see Figure 1). Since its first successful synthesis in 1977, ${ }^{\text {1a }}$ the reactivity of this compound has been under active investigation. ${ }^{16}$

[^0]In view of the large amount of strain present in 1, a study of its molecular orbital structure is of interest. A suitable method for obtaining reliable information about the occupied molecular orbitals in the valence region is UV photoelectron (PE) spectroscopy. Since unambiguous assignment of PE spectra usually requires $P E$ information on a series of related compounds, the saturated analogue of $\mathbf{1}$, tetracyclooctane (2), and a homologue of 1, deltacyclene (3), have been studied as well. In the literature a large body of PE data is available on related systems containing a cyclopropane ring but lacking the $\mathrm{C}_{4} \mathrm{C}_{5}$ bridge. ${ }^{2}$ Bischof et al. ${ }^{3}$

[^1]

Figure 1. Molecular structures and numbering of atoms in compounds $1-9$.

Figure 2. The Walsh orbitals of cyclopropane. The two components of the highest occupied orbital, $3 e^{\prime}$, are denoted as e_{A} and e_{S} because they are antisymmetric and respectively symmetric with respect to the vertical plane through C_{1}.
have studied endo-tricyclo[3.2.1.0 $0^{2,4}$]oct-6-ene (4), exo-tricyclo[3.2.1.0 ${ }^{2,4}$]oct-6-ene (5), exo-tricyclo[3.2.1. $0^{2,4}$]octane (6), and endo-tricyclo[3.2.1.0 ${ }^{2,4}$] octane (7). A PE study on a number of related diazo compounds $(\mathbf{8}, 9)$ should be mentioned as well. ${ }^{4}$
Special interest has been focused on the position and splitting of the highest occupied level of the cyclopropane ring, derived mainly from the in-plane tangential carbon 2 p AOs ($3 e^{\prime}$ in cyclopropane, see Figure 2) and commonly denoted as Walsh orbitals e_{A} and $e_{S} .{ }^{5}$ The Walsh orbitals may be approximately written as:

$$
\begin{gathered}
\mathrm{e}_{\mathrm{S}}=\frac{1}{\sqrt{2}}\left(P_{2}-P_{3}\right) \\
\mathrm{e}_{\mathrm{A}}=\frac{1}{\sqrt{6}}\left(2 P_{1}-P_{2}-P_{3}\right)
\end{gathered}
$$

The difference in amplitudes of these orbitals at C_{1} and C_{2}, C_{3}, respectively, has played a crucial role in understanding their splitting in substituted cyclopropanes. Observed splitting patterns have been rationalized in terms of "inductive" effects of substituents at the three-membered ring ${ }^{3}$ and in terms of "conjugative" interaction with, e.g., the $\mathrm{C}-\mathrm{C} \pi$-bonding orbitals in 4^{3} (or with an $\mathbf{N}=\mathbf{N} \pi$ bond as in $\mathbf{8}$ or $\mathbf{9}^{4}$). We may summarize the data in ref 2 by noting that in all cases where two alkyl substituents are present (at C_{2} and C_{3}) one finds the e_{S} level above e_{A} by $0.6-0.8 \mathrm{eV}$, whereas with only a single alkyl substituent (at C_{1}) e_{A} is above e_{S} by about 0.8 eV . In the few 1,2,3-trialkylcyclopropanes studied e_{S} and e_{A} are either degenerate by symmetry or e_{S} is above e_{A}. Our compounds $\mathbf{1}$ and $\mathbf{2}$, however, are found to be unique in having e_{A} well above e_{s}. The assignment of the experimental photoelectron spectra is based on nonempirical Hartree-Fock-Slater calculations (see next section), which are also used to show how this unusual behavior of $\mathbf{1}$ and $\mathbf{2}$ is related

[^2]to the cage structure of these molecules.

Computational

The Hartree-Fock-Slater method has been described elsewhere. ${ }^{6.7}$ Physically the crucial feature of the method is the use of the Slater $\rho^{1 / 3}$ (or $\mathrm{X} \alpha$) exchange (correlation) potential instead of the Hartree-Fock exchange operator:

$$
V_{\mathrm{X} \alpha}=-3 \alpha\left[\frac{3}{8 \pi} \rho\right]^{1 / 3}
$$

The resulting one-electron equations are solved by using an expansion in exponential basis functions (Slater-type orbitals or STOs). The computational scheme, involving numerical integration of the Fock matrix elements and fitting of the electron density with a set of auxiliary one-center fitting functions, is designed to yield one-electron energies and ionization energies to a numerical accuracy of ca. 0.01 eV . This is deemed sufficient as errors due to basis set limitations and deficiencies of the $\mathrm{X} \alpha$ one-electron model are at least an order of magnitude larger. From experience on many systems ${ }^{8-12}$ we may conclude that the calculated IEs agree in general to within a few tenths of an electron volt with experiment. Sometimes absolute deviations as large as 1 eV have been found, but in those cases the computed spectrum shows a fairly constant shift with respect to the experimental spectrum, the relative band positions being predicted to an accuracy of ca. 0.3 eV . These findings agree with those of De Alti et al., ${ }^{13}$ who also used the $\mathrm{X} \alpha$ method, but Gaussian basis functions instead of STOs (cf. Dunlap et al. ${ }^{14}$). In this paper we employ double ζ STO basis sets, since extended basis sets yield only slight improvements for the calculation of IEs. We stress that the computed ionization energies are obtained from $\triangle \mathrm{SCF}$ calculations employing the scheme for total energy differences developed by Ziegler and Rauk. ${ }^{15}$ Relaxation effects are thus fully incorporated.

Since detailed experimental geometries are not known for these compounds, a geometry optimization procedure has been carried out by using the semiempirical MNDO method. ${ }^{16}$ The bond lengths and bond angles obtained in this manner were found to be in accordance with standard values for hydrocarbons and known data for norbornadiene ${ }^{17}$ and bicyclopentane. ${ }^{18}$ These geometries have been used in the HFS calculations.
The MNDO method can also be employed to calculate IEs from the one-electron energies with Koopmans' theorem. ${ }^{19}$ Compared to the HFS results quantitative differences were found, but the ordering of the highest occupied MOs was identical.

Experimental

The PE spectra of compounds $1,202,{ }^{20}$ and 3^{21} were recorded on a modified Vacuum Generators ESCA 3 spectrometer equipped with a hemispherical electrostatic analyzer. A helium dc discharge lamp which produced radiation of $584 \AA(21.21 \mathrm{eV})$ was used as a photoionization source. Spectra were calibrated by using the known ionization energies (IEs) of carbon disulphide, nitrogen, and water. The resolution during

[^3]

Figure 3. PE spectra of compounds 1-3.
the course of the experiments was approximately 55 meV . From the spectra presented in Figure 3, it is clear that in the region beyond ~ 12 eV severe overlap of a large number of bands prohibits a detailed analysis. In the lower IE region the situation is more favorable.

Results and Discussion

The PE spectra measured for compounds $\mathbf{1 - 3}$ are presented in Figure 3. In view of the severe overlap in the high-IE regions, we shall concentrate on the bands with IEs below $\sim 12 \mathrm{eV}$. For 1 three photoionization signals are observed in this part of the spectrum. The band shapes and relative intensities indicate that two PE bands are hidden under the first and third signals, respectively, leading to a total of five IEs below 12 eV . The spectrum of $\mathbf{2}$ is more congested. In the region of interest we distinguish three band maxima and a shoulder at the low-IE side of the very strong signal at $\sim 12 \mathrm{eV}$. Spectral expansions suggest that the signal with a maximum at $\sim 9.70 \mathrm{eV}$ is asymmetric and probably contains two photoionization bands. In the spectrum of 3 the second signal is probably composed of two PE bands. Especially for compounds 2 and $\mathbf{3}$ the spectral overlap problem is already significant in the low-IE regions. The IEs appearing as separate spectral bands and those estimated from overlapping signals are summarized in Table I. Our supposition that some of the observed signals in the PE spectrum of compounds $\mathbf{1 - 3}$ contain more than

Table I. Calculated and Experimental Lonization Energies and Orbital Characterization of the Low-IE Region of Compounds 1-3

MO	character	calcd (HFS)	exptl
1			
13a'	$\pi(\mathrm{C}=\mathrm{C})$	8.0	8.95
$7 \mathrm{a}^{\prime \prime}$	$60 \% \mathrm{e}_{\mathrm{A}}\left(\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}\right)-30 \%$ "e e_{A} " $\left(\mathrm{C}_{1} \mathrm{C}_{5} \mathrm{C}_{6}\right)$	8.1	9.15
$12 \mathrm{a}^{\prime}$	${ }^{2}\left(\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}\right)$	8.8	9.90
$6 \mathrm{a}^{\prime \prime}$	mainly $\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6}$	9.9	10.9 s
11a'	$\mathrm{C}_{4} \mathrm{C}_{5}$ bridge	10.1	11.25
2			
$8 \mathrm{a}^{\prime \prime}$	65\% $\mathrm{e}_{\mathrm{A}}\left(\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}\right)-20 \%$ "e e^{\prime} " $\left(\mathrm{C}_{1} \mathrm{C}_{5} \mathrm{C}_{6}\right)$	7.6	8.8 s
13a'	$\mathrm{e}_{5}\left(\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}\right)$	8.4	9.70
$7 \mathrm{a}^{\prime \prime}$	mainly ($\mathrm{C}_{1} \mathrm{C}_{5} \mathrm{C}_{6}$)	8.4	9.70
$12 a^{\prime}$	$\mathrm{C}_{4} \mathrm{C}_{5}$ bridge	9.1	10.30
11a'	delocalized	9.8	11.00
3			
$15 \mathrm{a}^{\prime}$	$\pi(\mathrm{C}=\mathrm{C})$	7.3	8.7 s
$8 \mathrm{a}^{\prime \prime}$	$\mathrm{e}_{\mathrm{A}}\left(\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}\right)$	7.7	9.50
14a',	$\mathrm{e}_{5}\left(\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}\right)$	8.1	9.65
7a',	mainly ($\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6}$)	8.5	10.00
$6 \mathrm{a}^{\prime \prime}$	mainly ($\mathrm{C}_{1} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8}$)	9.4	$10.8{ }_{5}$
$13 \mathrm{a}^{\prime}$	$\mathrm{C}_{4} \mathrm{C}_{9} \mathrm{C}_{5}$ bridge	10.3	11.7

Figure 4. Comparison between experimental band positions and results of HFS calculations (shifted by 1 eV) for compounds $1 \mathbf{1 - 3}$.
one PE band is supported by our HFS calculations. In Table I we give the HFS calculated IEs together with a characterization of the orbitals. We note that apart from an overall shift by about 1 eV the agreement between the HFS results and experimental band positions is quite reasonable (cf. also Figure 4). We draw attention to the positions of e_{A} and e_{S}, the orbitals derived from the $3 e^{\prime}$ Walsh orbitals of cyclopropane, e_{A} being antisymmetric and e_{S} symmetric with respect to the mirror plane present in 1-3 (see also Figure 2). For $\mathbf{1}$ and $\mathbf{2}$ the calculations unambiguously

Figure 5. Experimental band positions (from this work and ref 3) and correlations for compounds 1-7.
prove e_{A} to be above e_{S} by almost 1 eV . This result is put in perspective by considering the series of molecules 4-7 in Figure 5. The experimental band positions of $4,5,6$, and 7 in this figure have been taken from the literature, ${ }^{3}$ and the assignments have been reconfirmed by our present MNDO and HFS calculations. We note the ordering $e_{S}>e_{A}$ for the molecules without a $\mathrm{C}_{4}-\mathrm{C}_{5}$ bridge and the reversed ordering for 1 and 2.

As a starting point in our discussion of the series depicted in Figure 5 we consider first the moiety $\mathrm{C}_{3} \mathrm{H}_{4}$, i.e., cyclopropane minus two hydrogens at C_{2} and C_{3}. This moiety has been used as a fragment in building the larger systems 4-7. HFS calculations show that removing two hydrogens at C_{2} and C_{3} of cyclopropane destabilizes e_{S} much more than e_{A} due to the large amplitude of e_{S} at C_{2} and C_{3}. The calculated $\mathrm{e}_{\mathrm{S}}-\mathrm{e}_{\mathrm{A}}$ splitting is 2.2 eV in the cyclopropyl fragment. Creating C -alkyl bonds in place of $\mathrm{C}-\mathrm{H}$ bonds diminishes the $\mathrm{e}_{\mathrm{S}}-\mathrm{e}_{\mathrm{A}}$ gap to $\mathrm{ca} .0 .6-0.8 \mathrm{eV}$, as in $\mathbf{4}, 5,6$, and 7. We note that with two alkyl substituents, complete degeneracy of e_{S} and e_{A} is not necessary on symmetry grounds and would indeed be accidental. When we now proceed to 3 we note that introducing a third alkyl substituent at the cyclopropane ring makes e_{S} and e_{A} nearly degenerate. This is understandable from the approximate local threefold symmetry at the cyclopropane ring (in systems like nortricyclene and hexahydrobullvalene the threefold axis is conserved, and the Walsh orbitals are therefore exactly degenerate ${ }^{3}$). We also observe that the destabilization of e_{A} relative to e_{S} upon alkyl substitution at C_{1} of cyclopropane is in agreement with the experimental results for other C_{1}-substituted cyclopropanes. ${ }^{2}$ Moving next to 1 and 2 we observe strong destabilization of e_{A}, which is apparently related to the contraction of the cage moiety of these molecules. This is substantiated by analysis of the calculations. The e_{A} orbital has a large amplitude at C_{4}. When as in 1 and $2 C_{4}$ is brought close to C_{5} to form the $\mathrm{C}_{4}-\mathrm{C}_{5}$ bridge, an antibonding interaction with a "pseudo- e_{A} " orbital on the $\mathrm{C}_{1} \mathrm{C}_{5} \mathrm{C}_{6}$ triad drives the e_{A} upwards. This antibonding interaction is illustrated by contour plots of $7 \mathrm{a}^{\prime \prime}$ of 1 in the $\mathrm{C}_{4} \mathrm{C}_{2} \mathrm{C}_{3}$ and the $\mathrm{C}_{1} \mathrm{C}_{5} \mathrm{C}_{6}$ planes (Figure 6) which demonstrate the large amplitude at the top atoms C_{4} and C_{5} and the π antibonding character along the $\mathrm{C}_{4} \mathrm{C}_{5}$ link (note the phase change

Figure 6. Contour plots of the $7 \mathrm{a}^{\prime \prime}$ orbital in the $\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$ plane (a) and the $\mathrm{C}_{1} \mathrm{C}_{5} \mathrm{C}_{6}$ plane (b) in compound 1.
from one plane to the other). The bonding pseudo- e_{A} counterpart is calculated to lie below 13 eV , in an extremely crowded region of the spectrum, and cannot be observed separately.

Conclusion

In summary, we conclude that the strain in compounds 1 and 2 caused by overlap repulsion between $\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$ and $\mathrm{C}_{1} \mathrm{C}_{5} \mathrm{C}_{6}$, which are forced into a nearly parallel position when the $\mathrm{C}_{4} \mathrm{C}_{5}$ bridge is formed, shows up quite distinctly in the PE spectrum in an unusual destabilization of the Walsh e_{A} orbital. It is interesting to note that the HOMO of $\mathbf{2}$ is e_{A}, with $\mathrm{a}^{\prime \prime}$ symmetry, whereas for 6 and 7 the HOMO is e_{S}, with a' symmetry. This change in ordering may have implications for the chemical reactivities of these compounds as far as reactions controlled by orbital symmetry are concerned.

The HFS method is found to be a useful and reliable instrument in the assignment of PE spectra of molecules that are of interest in organic chemistry. Often such spectra are analyzed on the basis of empirical considerations alone, using assumptions which may be unwarranted or whose justifiability is difficult to judge. Reliable ab initio calculations avoid these problems. A case in point is the analysis of the PE spectra of 8 and $\mathbf{9}^{4}$ where the basic assumption that e_{A} in 8 and 9 remains at virtually the same energy is clearly contradicted by the present results.

Acknowledgment. We are grateful to R. Mooyman for experimental assistance. Two of us (G.J. and J.S.) wish to acknowledge the Netherlands Organization for the Advancement of Pure Research for financial support.

Registry No. 1, 35434-64-1; 2, 29185-91-9; 3, 7785-10-6.

[^0]: (1) (a) Klumpp, G. W.; Stapersma, J. Tetrahedron Lett. 1977, 747. (b) The thermal and the photochemical rearrangements of 1 have been reported: Stapersma, J.; Rood, I. D. C.; Klumpp, G. W. Tetrahedron 1982, 38, 2201. Stapersma, J.; Klumpp, G. W. Recl. Trav. Chim. Pays-Bas 1982, 101, 274.

[^1]: (2) Gleiter, R. "Topics in Current Chemistry"; Springer-Verlag: Berlin, 1979; Vol. 86, p 197.
 (3) Bischof, P.; Heilbronner, E.; Prinzbach, H.; Martin, H. D. Helv. Chim. Acta 1971, 54, 1072.

[^2]: (4) Schmidt, H.; Schweig, A.; Trost, B. M.; Neubold, H. B.; Scudder, P H. J. Am. Chem. Sor. 1974, 96, 622.
 (5) Walsh, A. D. Nature (London) 1947, 159, 167, 712; Philos. Mag 1949, 40, 1.

[^3]: (6) Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 41.
 (7) Baerends, E. J.; Ros, P. Int. J. Quantum Chem., Symp. 1978, 8S, 169.
 (8) Baerends, E. J.; Ros, P. Chem. Phys. 1973, $2,52$.
 (9) Baerends, E. J.; Ros, P. Chem. Phys. 1975, 8, 412.
 (10) de Leeuw, D. M.; Mooyman, R.; de Lange, C. A. Chem. Phys. 1979, 38, 21.
 (11) Jonkers, G.; de Lange, C. A.; Snijders, J. G. Chem. Phys. 1980, 50, 11.
 (12) Baerends, E. J;; Snijders, J. G.; de Lange, C. A; Jonkers, G. In "Local Density Approximations"; Dahl, J. P., Avery, J., Eds.; Plenum: New York, 1983; in press.
 (13) De Alti, G.; Decleva, P.; Lisini, A. Chem. Phys. 1982, 66, 425.
 (14) Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R. J. Chem. Phys. 1979, 71, 3396.
 (15) Ziegler, T.; Rauk, A. Theor. Chim. Acta 1977, 46, 1
 (16) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4899; Fletcher, R.; Powell, M. J. D. Comput. J. 1963, 6, 163. Davidson, W. C. Ibid. 1968, 10,406
 (17) Yokozeki, A.; Kuchitsu, K. Bull. Chem. Soc. Jpn. 1971, 44, 2356.
 (18) Suenram, R. D.; Harmony, M. D. J. Chem. Phys. 1972, 56, 3837.
 (19) Koopmans, T. Physica 1933, $1,104$.
 (20) Stapersma, J.; Rood, I. D. C.; Klumpp, G. W. Tetrahedron 1982, 38, 191
 (21) Cannell, L. G. Tetrahedron Lett. 1966, 5967. Katz, T. J.; Carnahan, J. C., Jr.; Boecke, R. J. Org. Chem. 1967, 32, 1301.

